Applying domain and design knowledge to requirements engineering *

W. Lewis Johnson, Martin S. Feather

USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695

Abstract

This paper describes efforts to develop a trans-
formation-based software environment which supports
the acquisition and validation of software requirements
specifications. These requirements may be stated in-
formally at first, and then gradually formalized and
elaborated. Support is provided for groups of require-
ments analysts working together, focusing on different
analysis tasks and areas of concern. The environment
assists in the validation of formalized requirements by
translating them into natural language and graphical
diagrams, and testing them against a running sim-
ulation of the system to be built. Requirements de-
fined in terms of domain concepts are transformed into
constraints on system components. The advantages
of this approach are that specifications can be traced
back to requirements and domain concepts, which in
turn have been precisely defined.

1 Introduction

We have built a demonstration requirements/spec-
ification environment called ARIES! which require-
ments analysts may use in evaluating system require-
ments and codifying them in formal specifications.
This work helps to address several roadblocks in pro-
viding knowledge-based automated assistance to the
process of developing formal specifications. One of
the principal roadblocks is that formal specification
languages are difficult to use in requirements acqui-
sition, particularly by people who are not experts in
logic. ARIES provides tools for the gradual evolution
of acquired requirements, expressed in hypertext and
graphical diagrams, into formal specifications. The

*An extended version of this paper appeared in Jouranal of
Systems Integration, vol. 1, pp. 283-320.

L ARIES stands for Acquisition of Requirements and Incre-
mental Evolution of Specifications.

David R. Harris

Lockheed Sanders
MER24-1583, P.O. Box 2034
Nashua, NH 03061-2034

analysts invoke transformations to carry out this evo-
lution; in general, support for rapid and coordinated
evolution of requirements is a major concern. ARIES is
particularly concerned with problems that arise in the
development of specifications of large systems. Speci-
fication reuse is a major concern, so that large specifi-
cations do not have to be written from scratch. Mech-
anisms are provided for dealing with conflicts in re-
quirements, especially those arising when groups of an-
alysts work together. Validation techniques, including
simulation, deduction, and abstraction, are provided,
to cope with the problem that large specifications are
difficult to understand and reason about.

ARIES is a product of the ongoing Knowledge-
Based Software Assistant (KBSA) program. KBSA, as
proposed in the 1983 report by the US Air Force’s
Rome Laboratories [10], was conceived as an inte-
grated knowledge-based system to support all aspects
of the software life cycle. The ARIES effort builds on
the results of earlier efforts at USC / ISI and Lock-
heed Sanders. Requirements analysis was addressed in
Lockheed Sanders’s Knowledge-Based Requirements
Assistant [11]. IST developed the Knowledge-Based
Specification Assistant {19, 15, 14] to support spec-
ification construction, validation, and evolution. In
ARIES there is no attempt to separate requirements
analysis activities from specification activities; rather,
specifications are viewed as the outcome of the process
of acquiring requirements and formalizing them.

2 ARIES’s Contribution

ARIES contains tools for acquisition, review, analy-
s1s, and evolution. Acquisition facilities allow analysts
to build up system descriptions gradually. Review and
analysis tools allow analysts to check for consistency,
correctness, and ambiguity, and gauge completeness;
they also help make systems descriptions understand-
able to non-computer specialists. Evolution tools sup-

- 48 -

port modification, tracing, and evolution of require-
ments descriptions.

2.1 Acquisition and review tools

The acquisition tools in ARIES aim to capture ini-
tial statements of requirements as simply and directly
as possible. A structured text facility is employed for
managing textual information found in relevant docu-
ments or in informal engineering notes. To the extent
that such documents already exist and can be linked
to subsequent formal specifications, ARIES can make a
strong contribution to the correctness and traceability
of the completed specification. Since natural language
by itself is often awkward and ambiguous as a medium
for stating requirements, other notations familiar to
analysts are likewise supported: state transition di-
agrams, information flow diagrams, taxonomies, de-
composition hierarchies, as well as formal specification
languages. We are experimenting with domain-specific
notations, to make it possible for non-computer spe-
cialists to describe requirements. Importantly, these
notations are all mapped onto a common representa-
tion internal to ARIES.

The review process in ARIES applies many of the
same tools as acquisition, but in reverse. Informa-
tion entered into the system in one notation may be
presented in a different notation; making it easier to
check specifications for correctness and completeness
of specifications. However, not all notations are used
in a symmetric fashion—for example, ARIES is able
to translate from its formal internal descriptions to
English, but it cannot translate English into formal
requirements statements,

2.2 Evolution

Evolution mechanisms are central to requirements
analysis in ARIES: requirements statements are ex-
pected to evolve gradually over time. FEwolution
transformations are the principal mechanism for evo-
lution in ARIES. They are operators that modify
system descriptions in a controlled fashion, affect-
ing some aspects of a requirements statement while
retaining others unchanged. They also propagate
changes throughout a system description. Signifi-
cant effort has been invested in ARIES in identify-
ing evolution steps (both meaning-preserving and non-
meaning-preserving) that routinely occur in the spec-
ification development process, and automating them
in the form of evolution transformations.

2.3 Analysis

Analysis capabilities help analysts check for incon-
sistencies in proposed requirements, and explore con-
sequences. Three basic types of analysis capabilities
are provided. First, a simulation facility translates de-
scriptions of required behavior into executable simula-
tions. By running the simulations, an analyst can de-
termine whether the stated requirements really guar-
antee satisfactory behavior. Deduction mechanisms
propagate information through the system descrip-
tion, both to complete it and to detect conflicts and
inconsistencies. Abstraction mechanisms employ evo-
lution transformations to extract simplified views of
the system description. These abstracted views are
typically easier to validate, either through simulation
or by inspection.

2.4 Reuse tools

Requirements may be defined by specializing and
adapting existing requirements in ARIES’s knowledge
base of common requirements; this makes it easier
to define requirements quickly and accurately. Fold-
ers are used in ARIES to capture, separate, and re-
late bodies of requirements information. The analysts
can control the extent to which folders share infor-
mation, and gradually increase the sharing as incon-
sistencies are reconciled. ARIES places a heavy em-
phasis on codification and use of domain knowledge
in requirements analysis. Although a number of re-
searchers have identified domain modeling as a key
concern (e.g., Greenspan [4]), it is given short shrift
in typical practice. Requirements analysis is usually
narrowly focused on describing the requirements for a
single system. This is problematic if an organization
is interested in introducing more than one computer
system into an environment, or when the degree of
computerization of an organization is expected to in-
crease over time. We have been modeling particular
domains within ARIES, and experimenting with using
such knowledge in the engineering of requirements for
multiple systems.

3 An Example of Use

To demonstrate the power of the ARIES approach,
and its ability to handle large complex specification
problems, we have devoted significant effort to a sin-
gle domain, namely air traffic control (ATC). The re-
quirements documents for the the Federal Aviation
Administration’s Advanced Automation Program [13]

- 49 -

Aircraft

Localion—of

&

Controlier

Figure 1: Initial context diagram of ATC system

were studied, and sections of these documents were
formalized. Other documents concerning air traffic
control procedures, as well as interviews with ATC
experts, were also used as part of this study. The pur-
pose of the study was to show that ARIES is potentially
applicable to such problems, although we have not at-
tempted to test it in use by software engineers on such
projects.

The following discussion presents a particular
thread of specification development, taken from the
ATC domain. This example highlights the use of evo-
lution transformations in specification development.
Other capabilities will be illustrated throughout the
paper.

Figure 1 shows an initial view of aircraft course
monitoring. It is depicted here in a contezt diagram,
a diagram showing the interactions between a sys-
tem and its external environment, and the information
that flows between them. In these diagrams, ovals de-
note processes, boxes and miscellaneous icons denote
objects, and double circles indicate system boundaries.

The diagram distills course monitoring to its essen-
tial elements: the interaction between aircraft and the
ATC system (ATC). This abstracted view of the ATC
system is useful as a basis for stating course moni-
toring requirements. It is a natural abstraction for
the domain, corresponding to the way flight proce-
dures are commonly described in airmen’s flight man-
uals [2]. We will not go into the specific details here
of how far expected location and actual location are
permitted to differ. Our concern is rather to ensure

that course monitoring requirements stated from the
airman’s point of view can be transformed into spec-
ifications of system functionality, so that they can be
integrated into the requirements specification. The
transformed requirements should take into account the
actual data interfaces of the proposed system.

Figure 2 shows a more detailed view of the ATC
process. In this view, more of the agents of the pro-
posed system are introduced, specifically radars and
controllers. ATC is no longer viewed as a single agent;
instead, there are two classes of agents, the air traffic
control computer system and the controllers. The air
traffic control system has as one of its subfunctions
a process called Ensure-On-Course which examines the
location of the aircraft, and compares it against the
aircraft’s expected location. If the two locations differ
to a sufficient degree, ATC attempts to affect a course
change, changing the location of the aircraft.

Now the system determines the locations of the
aircraft as follows. The radar observes the aircraft
and transmits a set of radar messages, indicating that
targets have been observed at particular locations.
A Track-Correlation function inputs these radar mes-
sages and processes them to produce a set of tracks.
Each track corresponds to a specific aircraft; the loca-
tions associated with the tracks are updated when new
radar messages are received. Meanwhile, expected air-
craft locations are now computed from the aircraft
flight plans, which in turn are input by the controllers.
The Ensure-On-Course process is now modified so that
it issues notifications to the controller (by signaling
Must-Change-Course for an aircraft); the controller
then issues commands to the aircraft over the radio.

In order to get to this more detailed level of descrip-
tion, a number of transformations must be performed.
Most of the transformations have to do with defining
the pattern of data flow through the system. We can
suggest three options for obtaining this more detailed
description.

First we can maintain a limited, very informal, link
between the two descriptions — this in fact is what
happens in most current practice. The detailed inter-
connections between abstractions are not stated ex-
plicitly and any attempt at traceability occurs at best
through following a paper trail. It may be possible to
say that description 2 follows description 1, but there
is no record of the evolution (e.g., how was access to
“location-of” data changed?) as we move toward a
formal description.

Second, the interconnections can be manually de-
rived and recorded — perhaps using a global replace
command on a textual version of the stated informa-

- 50 -

ATC SYSTEM

Track-
Carrelation

Track-Lpcation

Track-Location

Expected-Location

adar -Location
Must-Change-Coursk

Course -
Piediclion

Locglion-of

Location-of
Aircrah Cenlrotter

Figure 2: Detailed context diagram of the ATC system

tion. Traceability is possible, but the process is te-
dious and error prone.

Third, evolution transformations can be employed
to derive the detailed description from the simplified
one. We have implemented a number of the evolution
transformations required. The user must select the de-
sired transformations, but it is ARIES’s responsibility
to check the transformations applicability conditions
and ensure that all effects are properly handled.

The most important transformation in this exam-
ple is called Splice-Data-Accesses. Figure 3 shows the
result of ARIES application of this transformation to
the version in Figure 1. It operates as follows. In
the initial version Ensure-On-Course accesses aircraft
locations directly. Splice-Data-Accesses is used to in-
troduce a new class of object, called Track, which has
a location that matches the aircraft’s location. The
Ensure-On-Course process is modified in a correspond-
ing way to refer to the track locations instead of the
aircraft locations.

This is a very typical example of how evolution
transformations work. The transformation modi-
fies one aspect of the specification (data flow) while
keeping other aspects fixed (e.g., the functionality
of Ensure-On-Course). It accomplishes this via sys-
tematic changes to the specification. In this case,
the transformation scans the definition of Ensure-On-
Course looking for references to Location-of; each of
these is replaced with a reference to the Track-Location
attribute of tracks.

- 51

Locat

Track=Ypcation

Ensure on Course

Figure 3: Intermediate context diagram of the ATC
system

Completing the derivation of this example requires
further application of several transformations. Splice-
Data-Accesses is applied again to introduce the ob-
Jject Radar-Message, which is an intermediate between
Aircraft and Track. Maintain-Invariant-Reactively is
invoked to construct processes for continuously up-
dating the radar messages and the tracks. A trans-
formation called Install-Protocol is used to introduce
a notification protocol between the Ensure-On-Course
process and the controller, so that Ensure-On-Course
issues notifications to the controller whenever the lo-
cation of the aircraft must be changed. A new process
called Course-Prediction is added to compute expected
locations from flight plans. Through this derivation
the specification is gradually refined towards a version
in which each system component interacts only with
those data and agents that it will be able to interact
with in the implemented system.

4 Mechanisms for Supporting Specifi-
cation Evolution

In this section, we describe the major technical
challenges we have undertaken to create ARIES.

4.1 Folders and workspaces

The primary units of organization for specifications
and requirements knowledge are workspaces and fold-

ers. Each analyst interacting with ARIES has one or
more private workspaces, which are collections of sys-
tem descriptions that are to be interpreted in a com-
mon context. Whenever an analyst is working on a
problem, it is in the context of a particular workspace
of definitions appropriate for that problem. In order
to populate a workspace, the analyst makes use of one
or more folders, which are collections of reusable con-
cept definitions. The ARIES knowledge base currently
contains 122 folders comprising over 1500 concepts.
Folders may contain either formal or informal descrip-
tions. Reusable formal descriptions include precise
definitions of reusable concepts; reusable informal de-
scriptions include excerpts from published documents
describing requirements of the domain, e.g., air traffic
control manuals.

4.2 Reuse techniques

Folders are intended to deal with the problems
of sharing and hiding information that arise in sys-
tems with large knowledge bases. They facilitate
reuse of requirements descriptions. A number of
other reuse techniques are being developed and ex-
plored: representation of multiple models, parame-
terized folders, specialization hierarchies, higher-order
constraints, and transformations.

4.2.1 Representation of multiple models

Analysts may selectively incorporate models of con-
cepts into their specifications, as in the following ex-
ample. The ARIES knowledge base contains several
alternative models for directions: as compass points
(e.g., north, south, east, and west), as the number of
degrees clockwise from magnetic north, or as multiples
of ten degrees from magnetic north (used to mark the
direction of runways). Each model is stored in a dif-
ferent folder, these folders are organized in a folder
specification hierarchy.

These collections of models may be used as follows.
During the initial stages of requirements of analysis,
when the system description is not very detailed, an
analyst can use the folder with the most general, and
least detailed, model of the concept of interest, Then,
as requirements are more detailed, and the analyst has
a better understanding of what details need to be mod-
eled, a model that is lower in the folder specialization
hierarchy may be used. This incremental traversal of
the folder specialization hierarchy helps ensure that
the model that is ultimately selected captures the as-
pects of the concept being modeled that are needed,
and does not include irrelevant detail.

4.2.2 Reuse through concept specialization

If an analyst needs to define a new concept, it is often
advantageous to define it as a specialization of one or
more abstract concepts, rather than construct a def-
inition from scratch. Specialization hierarchies relate
specific concepts to more general concepts, as in other
knowledge-based systems. They also relate specific
models of concepts to generic models of the same con-
cepts. The ARIES knowledge base contains specializa-
tion hierarchies of types, relations, and events. Some
important technical concerns had to be addressed in
order to ensure that such specialization hierarchies are
meaningful.

Consider, for example, two events, takeoff and
move. Intuitively, it would make sense for takeoff to
be a specialization of move: if an aircraft is taking off,
it is also moving. However, the two events are likely to
have different parameters. In the ARIES model, take-
off takes as input one parameter, the aircraft taking
off. move, on the other hand, has three parameters:
the object being moved, the agent doing the moving,
and the location that the object will be moved to. A
simple logical implication between the two concepts
cannot be drawn, because the parameters of the two
concepts do not match up,.

The solution to this problem that we provide in
ARIES is to reify the events and relations, i.e., to treat
instances of them as objects. When an event starts,
an object representing the event is created; when the
event completes, the object is destroyed. Parameters
of the events become attributes of the corresponding
event objects. Subsumption for events and relations
is then equivalent to type subsumption for the objects
representing the events and relations. In the case of
takeoff and move, subsumption is defined as follows.
Move actions are represented as objects with three at-
tributes: actor, actee, and destination. These are the
names of the input parameters in the declaration of
move. Takeoff actions are modeled as having four pa-
rameters and roles, One of them, ac, is an input pa-
rameter — the aircraft taking off. Another, destination,
is an output parameter, bound to the aireraft’s new lo-
cation when the takeoff is completed. Two other roles,
actee and actor, are bound to the value of the input
parameter ac. (Note that these binding are specified
in the roles attribute of takeoff.) When a takeoff event
is initiated, a corresponding object is created, with at-
tributes ac, actor, actee, and destination, correspond-
ing to the parameters and roles. By the semantics
of term subsumption, making takeoff a specialization
of move means that every event object describing a
takeoff must also be a well-formed move object.

- 52 -

4.2.3 Adaptation

The above techniques all enable analysts to construct
new specifications by reusing portions of existing spec-
ifications and domain knowledge. However, it is unre-
alistic to expect all concepts to be used in a specifica-
tion to be present in reusable form. Reuse techniques
must be complemented with techniques for adapting
and modifying existing knowledge. While informal
reuse (i.e., cutting and pasting as in a text editor) is
possible, we believe that there are many advantages to
be gained by using evolution transformations to con-
trol this process. Evolution transformations make it
possible to adapt concepts in the knowledge base in
restricted, systematic ways, to avoid the introduction
of errors during the adaptation process.

4.3 Acquisition and review

In order to make use of folders and reusable infor-
mation, it is necessary to he able to view them, select
from them, and add to them. These actions are done
through an interface called the Presentation Facility,
which makes ti possible to enter and view information
through a variety of different notations.

All notations that ARIES supports are views of the
same underlying system description representation.
The notations, which we call “presentations,” fall into
the following categories.

¢ Graphical presentations are diagrams showing
certain objects in the ARIES knowledge base, and
the links interconnecting them. The graphical
presentations in ARIES include specialization hi-
erarchy diagrams, state transition diagrams, data
or information flow diagrams, context diagrams
such as those shown in Section 3, and functional
decomposition diagrams.

e Spreadsheet presentations are tabular diagrams
that allow analysts to enter requirements for a
collection of components of the system descrip-
tion and interact with an underlying constraint
propagation system which is maintaining depen-
dency links among requirements statements.

¢ Formal presentations are detailed formal specifi-
cation texts, e.g., those written in Reusable Gist.

¢ Natural language is used in initial acquisition to
capture informal statements that will later be for-
malized. Machine-generated natural language is
used for checking formal specifications against in-
formal requirements, in requirements documents,

and in explaining specifications to clients and oth-
ers who are not experts in requirements modeling.

The key technical challenge in supporting muitiple
presentations has been to develop a common inter-
nal representation, the ARIES Metamodel, that will
easily map to the notations of stereotypical views of
systems (e.g., data flow arcs, system functional de-
composition, state transitions, predicate calculus-like
formalisms). Some metamodel concepts are relatively
separable and easy to handle. For example, the type,
relation, and event taxonomic diagrams are generated
from the internal representation in an obvious way.
Other concepts are highly interrelated. States are re-
lations which are derived from a designated relation
which has a parameter varying over a finite set of val-
ues.

The ARIES Presentation System is an architecture
for defining interactive presentations linked to the
ARIES Metamodel. It is implemented in cLX and
CLUE, on top of X windows, and is operational on both
the TI Explorer and the Sun. Each presentation defi-
nition includes a declarative description of the meta-
model relations which are used to establish and link
presentation pieces, and the editing and navigation
actions (associated either with a presentation piece or
the entire presentation). Editing actions match ef-
fect descriptions of transformations. Once the analyst
edits a presentation, ARIES searches for and applies
the evolution transformations which can make the re-
quired change.

4.4 Analysis and simulation

Analysis tools include a constraint propagation en-
gine and an incremental static analyzer. Analysis tools
are important in order to check for completeness and
consistency. A constraint mechanism, derived from
Steele’s Constraint Language [23], has been incor-
porated into ARIES for general maintenance of con-
straints — bidirectional propagation, contradiction
detection, retraction, and explanation. This mecha-
nism is essential where there are interacting design
properties (e.g., interplay between performance char-
acteristics) and developers can use assistance in identi-
fying when an interaction of requirements may not be
achievable. An incremental static analyzer, a version
of the static analyzer developed for the Specification
Assistant [16], maintains calling and type information
for the system description as it is being edited. It
also does such things as detect specification freedoms
which must be removed temporarily before simulation
can be performed.

- K3 -

Simulation tools are useful in order to observe the
behavior of a proposed system or its environment, in
order to determine appropriate parameters for require-
ments or to discover unexpected or erroneous behav-
ior. Simulation of vehicle behavior demonstrates, for
example, how long it takes for traffic flow to return
to normal after a light has changed, thus suggesting
what the appropriate light duration should be based
on the rate of traffic flow.

Simulations are constructed by means of a specially
modified compiler which translates a subset of the
ARIES Metamodel into Lisp and APj, an in-core rela-
tional database [6]. Events described in the specifica-
tion can compile either into ordinary Lisp functions,
or into task ohjects to be scheduled by the simulator’s
task scheduler. Functional requirements in the form
of invariants are compiled into rules which notify the
analyst if and when they are violated [3].

Successful simulation analysis depends crucially
upon the model of the system and enviromment chosen
for simulation. When attempting to answer a specific
validation question, it is useful to remove from con-
sideration those features of the system which are not
relevant to the question. Otherwise the simulation will
generate volumes of useless information. Consider, for
example, the question of whether a specification of
a traffic signal permits the traffic lights to be red in
all four directions. To answer this question, it may
be convenient to ignore the distinction between green
and amber, and just treat traffic lights as two-state de-
vices, red and non-red. Furthermore, it may be useful
at first to restrict analysis to the intersection of two
one-way streets: if red lights are permitted in all di-
rections in this case, they will also be permitted in the
two-way street case. If a suitable abstraction can be
found, validation can also be performed by inspection
and constraint propagation.

Kevin Benner in our group is currently investigat-
ing which abstractions are most suitable for which
kinds of analysis tasks. He is developing evolution
transformations which construct the abstractions and
designing the simulator to execute these abstractions.
Together these form a powerful set of capabilities for
specification validation.

4.5 Evolution transformations

As part of our earlier Specification Assistant work,
we built a sizable library of evolution transforma-
tions, that is, transformations whose very purpose is to
change the meaning of the specification to which they
are applied. Like conventional correctness-preserving
transformations, they blend computer power — the

ability to conduct repeated, mechanical operations
rapidly and reliably — and human intuition — know-
ing which transformation to apply when. They allow
us to:

¢ build specifications incrementally,

¢ explain specifications incrementally, i.e., by going
through the incremental record of their construe-
tion, and

o modify specifications by applying further evolu-
tions.

In the ARIES project we are now addressing several
deficiences in our earlier development. The focus of
the Specification Assistant project was to make an ini-
tial exploration of this approach to specification con-
struction and validation. Thus in populating our li-
brary of evolution transformations, we were motivated
by the examples we studied (primarily those of a pa-
tient monitoring system, and a portion of an air-traffic
control system). We built somewhat generalized ver-
sions of the evolution transformations necessary for
these examples, but paid little attention to complete-
ness or uniformity of our emerging library. We sub-
divided the library into categories of transformations
(e.g., data-flow-modifying transformations, structure-
adding transformations), but otherwise did little to
support the user of the system in selecting the appro-
priate transformation. In ARIES we are addressing all
of these deficiences.

4.5.1 Infrastructure to support eveolution

A major goal of the ARIES project has been to support
the user in selecting evolution transformations from a
library, and in applying them. This library constitutes
reusable knowledge about the process of requirements
analysis, which complements the knowledge about the
inputs and outputs of this process, i.e., knowledge of
domains and systems. We now sketch the approach
we are taking towards developing a usable evolution
transformation library.

The representation of specification concepts enables
efficient and effective modification of the semantic
content of complex specifications. Having identified
specification characteristics, we then chose a common
representation for them, semantic nets — nodes con-
nected by links, where the types of the nodes and links
determine which characteristic they represent. For
example, in the entity-relationship model, procedures
and types will be represented by nodes; the type of a
procedure’s formal parameter is represented by linking

- B4 .

the node representing that procedure with the node
representing that type. Changes to the specification
induce the corresponding changes on these semantic
net representations of the specification’s characteris-
tics. Each change can be expressed as a combination
of creating and destroying nodes, and inserting and
removing links between nodes. We have identified
frequently recurring composites of these operations,
for example, splice removes a direct link between two
nodes, A and B say, and replaces it with two links via
an intermediary, C say, so that A is linked to C and
C 18 linked to B.

Finally, we characterized each evolution transfor-
mation in terms of the effects it induces on the se-
mantic net representation of each of the above cat-
egories. Splice-Data-Accesses, illustrated in Section
3, 1s an example of a transformation that performs a
splice along the information flow dimension. Likewise,
an evolution transformation that introduces an inter-
mediate specialization of some concept (e.g., given a
specification containing type person and type airline-
pilot, a specialization of person, we might introduce
an intermediate type employed-person) is character-
ized as inducing a splice upon the specialization link
structure. Similarly, an evolution transformation that
wraps a statement inside a conditional is also charac-
terized as inducing a splice, but upon the control-flow
structure (the control flow link that led into the orig-
inal statement now leads into the surrounding condi-
tional statement, and there is a link from the condi-
tional to the original statement).

These steps considerably improved the use and or-
ganization of our library of transformations in the fol-
lowing ways:

¢ Selection from the library — to select an evolution
transformation, we give the characteristics of the
changes we wish to induce on the specification,
expressed as generic operations on the different
characteristics of specifications. We distinguish
between changes that we want to have happen,
changes that we don’t want to have happen, and
changes that we don’t care about.

¢ Coverage of the library — we can (crudely) es-
timate where our library lacks coverage by look-
ing for useful combinations of generic changes on
the different characteristics for which there are
no evolution transformations that induce those
changes.

¢ Uniformity of the library — seemingly unrelated
evolution transformations that induce the same
generic changes upon different characteristics can

be seen to be similar, and are constructed to re-
flect this similarity.

In addition to augmenting the evolution transfor-
mations with generic descriptions of the effects they
induce, we also augment them with explicit represen-
tations of their inputs (what they must be given), out-
puts (what new specification structure(s) they pro-
duce), and preconditions (what conditions must be
true to guarantee that they will run correctly). These
are represented in the same internal representation
that ARIES uses for describing inputs, outputs, and
constraints on events. ITach aspect of the transfor-
mation may also be given a hypertext documentation
string, as is customary for other concept definitions in
the system. This makes it possible to employ the same
presentation and explanation tools to transformations

~ as are applicable to components of application system

descriptions.

5 Related Work

The evolutionary approach to requirements spec-
ification has a number of precursors. Burstall and
Goguen argued that complex specifications should be
put together from simple ones, and developed their
language CLEAR to provide a mathematical founda-
tion for this construction process [5]. Goldman ob-
served that natural language descriptions of complex
tasks often incorporate an evolutionary vein — the final
description can be viewed as an elaboration of some
simpler description, itself the elaboration of a yet sim-
pler description, etc., back to some description deemed
sufficiently simple to be comprehended from a non-
evolutionary description [9].

Fickas suggested the application of an Al problem-
solving approach to specification construction [8].
TFundamental to his approach is the notion that the
steps of the construction process can be viewed as the
primitive operations of a more general problem-solving
process, and are hence ultimately mechanizable. Con-
tinuing work in this direction is reported in {22} and

1].
[]The Requirements Apprentice, [20], developed as
part of the Programmer’s Apprentice project [21], ad-
dresses the early stages of the software development
process, and includes similar techniques to those of the
Programmer’s Apprentice but operating on represen-
tations of requirements. Use of the Programmer’s Ap-
prentice is thus centered around selection of the appro-
priate fragment and its composition with the growing
program, with application of minor transformations

- 55 -

to tailor these introduced fragments. In contrast, our
approach has been centered around selection of the
appropriate evolution transformations, and reformu-
lating abstract descriptions of system behavior using
such transformations. Yet in fact the two approaches
are closely related. Many evolution transformations
instantiate cliches as part of their function, We are
currently exploring ways of making these cliches more
explicit in our transformation system.

Karen Huff has developed a software process mod-
eling and planning system that is in some ways similar
to ours [12). Her GRAPPLE language for defining plan-
ning operators influenced our representation of evolu-
tion transformations. Conversely, her meta-operators
applying to process plans were influenced by our work
on evolution transformations.

Kelly and Nonnenmann’s WATSON system [17] con-
structs formal specifications of telephone system be-
havior from informal scenarios expressed in natural
language. Their system formalizes the scenarios and
then attempts to incrementally generalize the scenario
in order to produce a finite-state machine. Their sys-
tem is able to assume significant initiative in the for-
malization process, because the domain of interest,
telephony, is highly constrained, and because the pro-
grams being specified, call control features, are rela-
tively small. Our work is concerned with larger, less
constrained design problems, where greater analyst in-
volvement is needed.

The PRISMA project [18] is also a system for assist-
ing in the construction of specifications from require-
ments. It supports multiple views of the emerging
specification, where the views that they have explored
are data-flow diagrams, entity relationship models,
and petri nets. Each view is represented in the same
underlying semantic-net formalism, yet represents a
different aspect of the specification. This representa-
tion is suited to graphical presentation and admits to
certain consistency and completeness heuristics whose
semantics depend on the view being represented (e.g.,
the lack of an ‘input’ link in this representation in a
data-flow diagram indicates a process lacking inputs;
in an entity-relationship diagram it indicates an en-
tity with no attributes; in a petri net diagram it indi-
cates an event with no preconditions (prior events)). A
paraphraser produces natural-language presentations
of many of the kinds of information manipulated by
the system (e.g., of the requirements information rep-
resented in the different views, of the agenda of tasks
and advice for performing those tasks, and of the re-
sults of the heuristics that detect uses of requirements
freedoms).

6 Summary

ARIES provides a variety of capabilities to support
the process of requirements acquisition and analysis.
These capabilities include acquisition, review, evolu-
tion support, analysis, and reuse support. These are
intended to help analysts satisfy the conflicting goals
of software requirements specification in a gradual and
systematic way. The system as a whole focuses on the
problems of describing systems from different view-
points, and reconciling different viewpoints.

By building the ARIES prototype, we have been
able to identify and offer solutions for many of the
significant challenges which must be met in making
knowledge-based requirements and specification de-
velopment environments a reality. Specifically we
have concentrated on supporting reuse of large do-
main independent and dependent knowledge-bases,
providing multi-presentation acquisition along with
significant automation support in the form of evo-
lution transformations, specification analysis, simula-
tions, We have developed mechanisms around many
requirements support features including folders, reuse
techniques, acquisition and review, analysis and sim-
ulation, evolution transformations, and traceability.
Work on the project is ongoing; most of the capa-
bilities envisioned for the system are already in place,
but much work remains to be done.

7 Acknowledgements

The following people contributed to the work
described here: Kevin Benner, Jay Myers, K.
Narayanaswamy, Charles Rich, Jay Runkel, and Lorna
Zorman. This work was sponsored Rome Labora-
tory contracts F30602-85-C-0221 and F30602-89-C-
0103, and DARPA contract no. NCC-2-520. Views
and conclusions contained in this paper are the au-
thors’ and should not be interpreted as representing
the official opinion or policy of the U.S. Government
or any agency thereof. '

References

[1] J.S. Anderson and S. Fickas. A proposed per-
spective shift: Viewing specification design as a
planning problem. In Proceedings of the 51h Inter-
national Workshop on Software Specification and
Design, Pitisburgh, Pennsylvania, pages 177-184.
Computer Society Press of the IEEE, May 1989.

- 56 -

[2]

[3]

[4]

(6]

[7)

[9]

[10)

[11]

[12]

ASA. Airman’s Information Manual. Aviation
Supplies and Academics, Seattle, WA, 1989,

K. Benner. Using simulation techniques to an-
alyze specifications. In Proceedings of the 5ih
KBSA Conference, pages 305-316, Syracuse, NY,
1990. Data Analysis Center for Software.

A. Borgida, 5. Greenspan, and J. Mylopoulos.
Knowledge representation as the basis for require-
ments specifications. JEEE Computer, 18(4):82-
91, 1985.

R.M. Burstall and J. Goguen. Putting theories
together to make specifications. In Proceedings of
the Fifth International Conference on Ariificial
Intelligence, pages 1045-1058, August 1977.

D. Cohen. AP5 Manual. USC-Information Sci-
ences Institute, June 1989. Draft.

A.M. Davis. Software Requirements Analysis and
Specification. Prentice Hall, Englewood Cliffs,
N.J., 1990.

S. Fickas. A knowledge-based approach to spec-
ification acquisition and construction. Technical
Report 86-1, CS Dept., University of Oregon, Eu-
gene, 1986.

N.M. Goldman. Three dimensions of design de-
velopment. In Proceedings, 8rd National Confer-
ence on Artificial Intelligence, Washington D.C.,
pages 130-133, August 1983.

C. Green, D. Luckham, R. Balzer, T. Cheatham,
and C. Rich. Report on a knowledge-based soft-
ware assistant. In Readings in Arlificial Intelli-
gence and Software Engineering. Morgan Kauf-
mann, Los Altos, CA, 1986.

D. Harris and A. Czuchry. The knowledge-based
requirements assistant. IELE Ezpert, 3(4), 1988.

K.E. Huff and V.R. Lesser. The GRAPPLE plan
formalism. Technical Report 87-08, U. Mass. De-
partment of Computer and Information Science,

April 1987.

V. Hunt and A, Zellweger. The FAA’s advanced
automation system: Strategies for future air traf-
fic control systems. IEEE Computer, 20(2):19-32,
February 1987.

W.L. Johnson. Deriving specifications from re-
quirements. In Proceedings of the 10th Interna-
tional Conference on Software Engineering, pages
428-437, 1988.

(15]

[16]

[17)

[19]

[20]

[23]

- 57 -

W.L. Johnson. Specification as formalizing and
transforming domain knowledge. In Proceedings
of the AAAI Workshop on Aulomating Sofiware
Design, pages 48-55, St. Paul, MN, 1988.

W.L. Johnson and K. Yue. An integrated specifi-
cation development framework. Technical Report
RS-88-215, USC / Information Sciences Institute,
1988.

V.E. Kelly and U. Nonnenmann. Reducing the
complexity of formal specification acquisition. In
Proceedings of the AAAI-88 Workshop on Au-
tomating Software Design, pages 6672, St. Paul,
MN, 1988.

C. Niskier, T. Maibaum, and D. Schwabe.
A look through PRISMA: Towards pluralistic
knowledge-based environments for software spec-
ification acquisition. In Proceedings, &th Inter-
national Workshop on Software Specification and
Design, Pittsburgh, Pennsylvania, May, pages
128-136. Computer Society Press of the IEEE,
1989.

The KBSA Project. Knowledge-based specifica-
tion assistant; Final report. unpublished, 1988.

H.B. Reubenstein and R.C. Waters. The require-
ments apprentice: An initial scenario. In Proc.
of the 5th International Workshop on Software
Specification and Design, pages 211-218, Pitts-
burgh, PA, May 1989. Computer Society Press of
the IEEE.

C. Rich. The Programmer’s Apprentice. ACM
Press, Baltimore, MD, 1990.

W.N. Robinson. Integrating multiple specifica-
tionss using domain goals. In Proceedings, 5th
International Workshop on Software Specifica-
tion and Design, Pittsburgh, Pennsylvania, May,
pages 219-226. Computer Society Press of the
IEEE, 1989.

G.L. Jr. Steele. The definition and implementa-
tion of a computer programming language. Tech-
nical Report 595, MIT Artificial Intelligence Lab-
oratory, 1980.

